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No-Reference and Robust Image Sharpness
Evaluation Based on Multiscale

Spatial and Spectral Features
Leida Li, Wenhan Xia, Weisi Lin, Fellow, IEEE, Yuming Fang, and Shiqi Wang

Abstract—The human visual system exhibits multiscale
characteristic when perceiving visual scenes. The hierarchical
structures of an image are contained in its scale space
representation, in which the image can be portrayed by a series of
increasingly smoothed images. Inspired by this, this paper presents
a no-reference and robust image sharpness evaluation (RISE)
method by learning multiscale features extracted in both the spatial
and spectral domains. For an image, the scale space is first built.
Then sharpness-aware features are extracted in gradient domain
and singular value decomposition domain, respectively. In order to
take into account the impact of viewing distance on image quality,
the input image is also down-sampled by several times, and the
DCT-domain entropies are calculated as quality features. Finally,
all features are utilized to learn a support vector regression model
for sharpness prediction. Extensive experiments are conducted
on four synthetically and two real blurred image databases. The
experimental results demonstrate that the proposed RISE metric
is superior to the relevant state-of-the-art methods for evaluating
both synthetic and real blurring. Furthermore, the proposed metric
is robust, which means that it has very good generalization ability.

Index Terms—Image sharpness evaluation, scale space, gradient,
singular value decomposition, entropy, support vector regression
(SVR).

I. INTRODUCTION

V ISUAL quality evaluation has been an increasingly im-
portant problem in multimedia processing and commu-

nication systems [1]–[3]. Since human is the end consumer of
multimedia signals, the most straightforward way to quality
evaluation is subjective rating. However, subjective evaluation
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is laborious and cannot be integrated into real-time applications.
In the past several years, objective quality evaluation has drawn
extensive attention, which is to build computational models for
measuring image degradations and meanwhile maintain consis-
tency with the human perception [4], [5]. Quality assessment
is becoming increasingly important for many image processing
applications, including compression [6]–[8], enhancement [9],
[10], restoration [11] and image forensics [12], [13], etc. Ac-
cording to the availability of reference information, the existing
quality metrics can be categorized into full-reference (FR) [14],
reduced-reference (RR) [15], [16] and no-reference (NR) [17],
[18] approaches.

Sharpness/blur is one of the most important factors of image
quality, which is very likely to occur across the whole lifecycle
of images, e.g., acquisition, processing, storage and transmis-
sion. Objective image sharpness evaluation is crucial for modern
imaging devices, and it also plays a vital role in benchmarking
image processing algorithms. In real-world applications, refer-
ence images are usually not available, so sharpness evaluation
needs to be done in a NR manner.

In the literature, several NR image sharpness/blur metrics
have been proposed. Marziliano et al. [19] proposed a simple
method by measuring the spread of image edges in the spatial
domain. Edges were first detected using the Sobel edge detec-
tor. Then the sharpness index was calculated as the mean edge
width across the whole image. In [20], Ferzli et al. proposed
the Just Noticeable Blur (JNB) model. JNB was first deter-
mined based on image local contrast. Then it was combined
into a probability summation model for generating the final
blur score. Narvekar et al. [21] addressed a method to estimate
the probability of detecting blur using a probabilistic model.
Then the information was pooled by calculating the cumulative
probability of blur detection (CPBD), producing the sharpness
score. Vu et al. [22] proposed the spectral and spatial sharp-
ness (S3) model. For an image, the magnitude spectrum slop
was utilized to estimate the attenuation of high-frequency infor-
mation; while the Total Variation (TV) model was adopted to
compensate for the impact of contrast component on sharpness
perception. Based on these features, a sharpness map was gener-
ated and the final sharpness score was generated using percentile
pooling. In [23], the authors proposed a fast image sharpness
(FISH) model based on Discrete Wavelet Transform (DWT).
Given an image, it was first transformed into the DWT domain.
Then the log-energies of the DWT subbands were computed
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and their weighted average value was defined as the overall
sharpness score. Sang et al. [24] addressed a simple method
based on the singular value curve (SVC). Hassen et al. [25]
proposed a sharpness index using the local phase coherence
(LPC-SI), which is sensitive to image sharpness changes. In
[26], Bahrami et al. proposed to use the maximum local vari-
ation (MLV), which was defined as the maximum gray-scale
variation of a pixel in a small neighborhood. Gu et al. [27]
proposed an autoregressive (AR) based image sharpness metric
(ARISM), which was achieved via the analysis of the AR param-
eter space of images. In [28], the authors proposed a simple and
effective image sharpness model based on sparse representation
(SPARISH). An overcomplete visual dictionary was first trained
based on natural image patches, and image blocks were repre-
sented based on the dictionary, producing the sparse coefficients.
Then block-wise energy of the image was computed based on the
sparse coefficients, which was mainly to account for the atten-
tion of high-frequency information caused by blurring. Finally,
a variance-based normalization procedure was further devel-
oped to achieve consistent sharpness evaluation across different
images.

The aforementioned image sharpness metrics have achieved
notable success in revealing the influence of blurring on image
quality. However, these methods are mainly designed and tested
on synthetic blur, which is mainly to simulate real-world camera
defocus distortion. This kind of blur is generated by applying
the Gaussian low-pass filtering on high quality pristine images,
so it is simple and distributed uniformly in the whole image.
However, in real-world imaging environments, the real blur is
much more complex. The existing image sharpness metrics are
very limited in evaluating real blur, which will be demonstrated
later in this paper. To design more advanced image sharpness
models that can be applied to both synthetic and real blur is still
an open problem.

Motivated by the above facts, this paper presents a more
practical no-reference and Robust Image Sharpness Evaluation
(RISE) metric. The proposed RISE model is inspired by the
following two facts. 1) The human visual system (HVS) exhibits
multi-scale property when perceiving visual scenes, and hier-
archical structures of an image are contained in its scale-space
representation [30]–[32]. 2) Viewing distance and accordingly
image resolution have great impact on the perceived image
quality [33]. For a given image, the scale space representation is
first constructed. Then sharpness-aware features are extracted in
both the spatial and spectral domains simultaneously. In order
to account for the impact of viewing distances on image quality,
the image is also down-sampled by several times, producing
images at different resolutions. Then the multi-resolution DCT
domain entropies are also computed as sharpness features.
Finally, all extracted features are utilized to train a Support
Vector Regression (SVR) model for sharpness prediction.
Extensive experiments are conducted on both synthetically and
real blurred image databases. The experimental results confirm
the superiority of the proposed metric over the existing sharp-
ness metrics and general-purpose NR image quality metrics.
Furthermore, RISE is robust, which means that it has very good
generalization ability.

Fig. 1. Flowchart of model training of the proposed RISE metric.

II. PROPOSED NR IMAGE SHARPNESS METRIC

The HVS is typically a multi-scale device, where the recep-
tive fields have been evolved to have the capacity of extracting
hierarchial structures from the scale-space representation of an
image [30]. Furthermore, it has been widely accepted that view-
ing distance has great impact on image quality perception [33].
In accordance with these, the basic idea of the proposed metric
is to learn quality-aware features in both multi-scale and multi-
resolution domains. Fig. 1 shows the flowchart of the training
phase of the proposed metric. For an input image, the scale space
representation is first built. Then we extract sharpness-aware
features based on the scale space images in gradient domain and
Singular Value Decomposition (SVD) domain, respectively. To
further account for the impact of viewing distance, we also ex-
tract entropy features in several down-sampled versions of the
original image. Finally, SVR is employed to train the quality
model.

A. Image Scale Space

It has been demonstrated that under various reasonable as-
sumptions the Gaussian function is the only suitable kernel for
building image scale space [34]. For an image I(x, y), the scale
space L(x, y, σ) can be obtained by convoluting it with a set of
Gaussian kernels with variable scales

L(x, y, σ) = I(x, y) ∗ G(x, y, σ) (1)

where σ is the scale, ∗ denotes the convolution, and the two-
dimensional Gaussian function G(x, y, σ) is defined as

G(x, y, σ) =
1

2πσ2 e−(x2 +y 2 )/2σ 2
. (2)

In this work, we construct image scale space with five scales,
which are denoted by scales 0-4, where scale 0 denotes the
original image. Specifically, the Matlab function imfilter with
Gaussian low-pass filter is adopted to generate the scale space
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Fig. 2. Scale space representations of two original images. Original image “Orchid” in the first row is of high quality, while the original image “Woman” in the
second row is blurred. (a) Original image. (b) Filter size 3 × 3, σ=2. (c) Filter size 9 × 9, σ=4. (d) Filter size 15 × 15, σ=6. (e) Filter size 21 × 21, σ=8.

images. The filter sizes are 3 × 3, 9 × 9, 15 × 15 and 21 × 21,
and the corresponding standard deviations (σ) are 2, 4, 6 and 8,
respectively.

Fig. 2 shows the scale spaces of two images with different
extents of blurring using the aforementioned parameters. It is
obvious that the scale space images are in fact reblurred versions
of the original ones, and the extents of blur are determined by the
Gaussian kernels. It is also observed that for different original
images, their scale space images have different characteristics.
Specifically, for a high-quality sharp image, the scale space im-
ages are quite different, which can be clearly seen from images
in the first row. For a blurred image, the corresponding scale
space images are very similar, which can be seen from images
in the second row. This indicates that the similarities between
the scale space images and the original image can be employed
to measure the sharpness of the original image. This inspires us
to extract sharpness-aware features in image scale space.

B. Multiscale Gradient Similarity

Gradient has been proved to be an effective structure feature
for image quality assessment [35]–[37]. Here, we extract gradi-
ent similarity feature between each scale space image and the
original image. For an original image and the corresponding
scale space images, their gradient maps are first computed by

Di =
|Di,1 | + |Di,2 |

2
(3)

with

Di,1 = [−1 0 1] ∗ Li , Di,2 = [−1 0 1]T ∗ Li (4)

where i = 0, 1, · · · , 4, Di,1 and Di,2 denote the horizontal and
vertical gradient images in the ith scale, [−1 0 1] and [−1 0 1]T

are the horizontal and vertical gradient operators, and Li denotes
the ith scale space image.

With the gradient maps, we compute the gradient similarity
between each scale space image and the original one

GSk =
2DkD0 + c1

D2
k + D2

0 + c1
(5)

Fig. 3. Multiscale gradient similarity features of images shown in Fig. 2.

where k = 1, 2, 3, 4, c1 is a small constant to ensure numerical
stability. Finally, average pooling is employed to generate the
final gradient similarity features

fG
k =

1
MN

M∑

x=1

N∑

y=1

GSk (x, y) (6)

where k = 1, 2, 3, 4, and M × N denotes the size of the image.
Fig. 3 shows the curves of the gradient similarity features

between the scale space images (b), (c), (d), (e) and the original
image (a) in Fig. 2. It is observed that the gradient similarity val-
ues of the high-quality image “Orchid” are lower than those of
the blurred image “Woman”. As a result, the gradient similarity
features indicate the extents of blurring in the original images.

C. Multiscale Singular Value Similarity

Besides the gradient similarity features, we also extract multi-
scale sharpness features in the SVD domain, which can effec-
tively gauge intrinsic structural changes in images [38].

For an M × N image A, it can be decomposed as

A = USVT (7)
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Fig. 4. Multiscale singular value features of images shown in Fig. 2.

where U is an M × M unitary matrix satisfying UTU = I,
V is an N × N unitary matrix satisfying VTV = I, S is an
M × N matrix with non-negative real numbers (singular val-
ues) on the diagonal. The columns of U and V are the left and
right singular vectors of A, respectively. Let r denote the rank
of image matrix A, then the singular value vector can be rep-
resented as s = (σ1 , σ2 , · · · , σr ), where σi, i = 1, 2, · · · , r, is
the singular value.

In this work, the singular value vectors of the scale space
images are denoted by {si , i = 0, 1, 2, 3, 4}. Then the singular
value similarity between each scale space image and the original
image is computed as

fS
k =

2sks0 + c2

s2
k + s2

0 + c2
(8)

where k = 1, 2, 3, 4, c2 is a small constant to avoid numerical
instability.

Fig. 4 shows the curves of the singular value similarity fea-
tures between the scale space images (b), (c), (d), (e) and the
original image (a) in Fig. 2. It is observed that the similar-
ity values of the high-quality image “Orchid” are much lower
than those of the blurred image “Woman”. Furthermore, the dif-
ferences are more obvious than the gradient similarity curves
shown in Fig. 3. Therefore, the singular value similarity features
are also effective in portraying blur in images.

D. Multiresolution Entropy in DCT Domain

Entropy measures the amount of information in a signal. For
an image, the amount of information reduces when it is subject
to blurring. With this consideration, we further extract entropy
as quality feature.

Recently, it has been pointed out that the perceived quality
of an image is greatly affected by the viewing distance and
image resolution [33]. Fig. 5 shows such an example. In this
example, the original blurred image (a) is down-sampled by
2×, 4× and 5× times in both horizontal and vertical directions,
producing the images shown in (b)-(d), respectively. It is ob-
served that there is obvious blur in the original image. However,
with the reduction of spatial resolution (equivalent of increased

viewing distance), the down-sampled images look sharper than
the original image.

Inspired by this fact, we first construct a multi-resolution
representation of the original image. Then the entropy features
are computed in the original and down-sampled images. In this
work, we down-sample the original image by 2× and 4× times
in both horizontal and vertical directions, producing two lower-
resolution images. In implementation, we utilize Matlab func-
tion imresize with bicubic interpolation algorithm to conduct the
down-sampling. Bicubic interpolation is an effective interpola-
tion method, which can produce images with high fidelity. By
this means, the down-sampling operation does not cause extra
distortions. After down-sampling, we then adopt the method in
[49] to compute the DCT domain entropy. Specifically, an im-
age is first portioned into non-overlapping 8 × 8 blocks, which
are then transformed into DCT domain, producing the coeffi-
cients C(i, j), i, j = 1, 2, · · · , 8. Then the DCT coefficients are
normalized as

P (i, j) =
C2(i, j)

∑8
i=1

∑8
j=1 C2(i, j)

(9)

where i and j are not equal to 1 simultaneously, so that the DC
component is excluded in the normalization. Then the entropy
of a local block is calculated by

Ek = −
8∑

i=1

8∑

j=1

P (i, j)log2P (i, j) (10)

where k = 1, 2, · · · ,K, K denotes the total number of blocks
in an image. For an image, the entropy values of all blocks
are then sorted in descending order, and the mean of the top
40% entropy values is calculated as the final entropy feature.
For the two down-sampled images, the same features are com-
puted, so a total of three entropy features are used in this
work.

E. Model Training and Sharpness Prediction

In this work, a total of 11 sharpness-aware features are ex-
tracted for each image, including 4 multi-scale gradient similar-
ity features, 4 multi-scale singular value similarity features and
3 multi-resolution entropy features. In order to combine them to
generate an overall sharpness score, we employ the support vec-
tor regression [29] to learn the quality model. Then the trained
SVR model is utilized to predict the sharpness score of a query
image. In implementation, the Radial Basis Function (RBF) is
used as the SVR kernel. Further details of SVR can be found
in [29].

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Settings

In this section, we conduct extensive experiments on pub-
lic blur image databases to verify the performance of the pro-
posed RISE metric. Specifically, six databases are used in our
experiments, including four synthetically and two real blurred
image databases. The synthetic blur databases include LIVE
[14], CSIQ [39], TID2008 [40], TID2013 [41], while the real
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Fig. 5. Image with different resolutions. (a) Original image. (b) Down-sampled image by 2× in both directions. (c) Down-sampled image by 4× in both
directions. (d) Down-sampled image by 5× in both directions.

TABLE I
INFORMATION OF BLURRED IMAGE DATABASES USED FOR PERFORMANCE

EVALUATION. MOS DENOTES THE MEAN OPINION SCORE, WHILE

DMOS DENOTES THE DIFFERENCE MEAN OPINION SCORE

Database Blur type No. of images Subjective score

LIVE Synthetic 145 DMOS
CSIQ Synthetic 150 DMOS
TID2008 Synthetic 100 MOS
TID2013 Synthetic 125 MOS
CID2013 Real 473 MOS
BID Real 586 MOS

Fig. 6. Sample images. The first row shows the synthetically blurred images,
while the second row shows the real blurred images.

blur databases are Camera Image Database (CID2013) [42] and
Blurred Image Database (BID) [43]. Detailed information of
these databases is summarized in Table I. To be more specific,
the synthetic blur images are generated applying Gaussian low-
pass filtering on high-quality pristine images, mainly aiming to
simulate practical defocus blurring. By contrast, the images in
CID2013 and BID are captured by consumer-type cameras in
uncontrolled environments. Fig. 6 shows several sample images
of both synthetic and real blurring. It is clear that synthetic blur
distributes uniformly in the whole image, while real blur is much
more complex.

To quantitatively measure the performance of the proposed
metric, we adopt three commonly used criteria, including the
Pearson linear correlation coefficient (PLCC), root mean square
error (RMSE) and the Spearman rank order correlation (SRCC)
[14]. PLCC and RMSE are used for measuring prediction ac-
curacy, while SRCC is used for measuring monotonicity. Be-
fore calculating these values, a nonlinear fitting is needed to
map the objective scores to the same scales of the ground truth
subjective scores [44]. In this work, the following five-parameter
logistic function is used [14]:

f(x) = τ1

(
1
2
− 1

1 + eτ2 (x−τ3 )

)
+ τ4x + τ5 (11)

where τi, i = 1, 2, · · · , 5, are the fitting parameters.

B. Performance Evaluation

1) Comparison With NR Sharpness Metrics: In this part, we
compare the performance of the proposed RISE metric with ten
existing (from classical to the most up to date) no-reference im-
age sharpness metrics, which are Marz. [19], JNB [20], CPBD
[21], S3 [22], FISH [23], SVC [24], LPC-SI [25], MLV [26],
ARISM [27] and SPARISH [28]. Table II summarizes the exper-
imental results in the six databases, where the best performance
values are marked boldfaced. In this experiment, 80% of the
images in each database are randomly selected for model train-
ing and the remaining 20% images are used for test. To avoid
bias, the above training-test operation is conducted 1000 times,
and the median performance values are reported for comparison
[47]. It should be noted that the performances of the compared
sharpness metrics are tested using source codes released by the
original authors.

It is known from Table II that the proposed RISE model
achieves the best performances in five of the six databases, re-
gardless of prediction accuracy and monotonicity. For synthetic
blur, RISE performs the best in CSIQ, TID2008 and TID2013.
Particularly in TID2008 and TID2013, RISE significantly out-
performs all the other metrics. In LIVE database, the pro-
posed method achieves the best prediction accuracy, while the
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TABLE II
PERFORMANCES OF RISE AND THE EXISTING SHARPNESS/BLUR MODELS ON FOUR SYNTHETIC AND TWO REAL BLUR DATABASES

Dataset Criterion Marz. [19] JNB [20] CPBD [21] S3 [22] FISH [23] SVC [24] LPC-SI [25] MLV [26] ARISM [27] SPARISH [28] RISE

LIVE PLCC 0.8102 0.8188 0.9124 0.9526 0.9044 0.9384 0.9316 0.9429 0.9560 0.9596 0.9620
SRCC 0.8008 0.7874 0.9189 0.9436 0.8856 0.9257 0.9389 0.9312 0.9511 0.9598 0.9493
RMSE 10.8261 10.6027 7.5583 5.6204 7.8800 6.3812 6.7116 6.1521 5.4167 5.1958 5.0011

CSIQ PLCC 0.7273 0.8711 0.8282 0.9175 0.8729 0.9322 0.9322 0.9444 0.9410 0.9391 0.9463
SRCC 0.7661 0.8380 0.8847 0.9059 0.8941 0.9019 0.9071 0.9247 0.9261 0.9141 0.9279
RMSE 0.1967 0.1407 0.1606 0.1140 0.1398 0.1037 0.1037 0.0943 0.0970 0.0984 0.0926

TID2008 PLCC 0.7111 0.6961 0.8331 0.8551 0.8138 0.8469 0.8635 0.8593 0.8430 0.8955 0.9289
SRCC 0.7283 0.6685 0.8412 0.8643 0.7972 0.8384 0.8736 0.8548 0.8505 0.8963 0.9218
RMSE 0.8250 0.8424 0.6492 0.6084 0.6820 0.6241 0.5918 0.6001 0.6312 0.5224 0.4278

TID2013 PLCC 0.7708 0.7115 0.8620 0.8816 0.8333 0.8752 0.8940 0.8830 0.8954 0.9020 0.9419
SRCC 0.7620 0.6947 0.8531 0.8609 0.8063 0.8612 0.8984 0.8787 0.8982 0.8940 0.9338
RMSE 0.7951 0.8769 0.6325 0.5890 0.6899 0.6036 0.5591 0.5858 0.5556 0.5389 0.4201

CID2013 PLCC 0.5247 0.5373 0.5245 0.6863 0.6521 0.3362 0.7031 0.6890 0.5523 0.6775 0.7934
SRCC 0.4394 0.4511 0.4448 0.6460 0.5893 0.2501 0.6024 0.6206 0.4719 0.6607 0.7690
RMSE 19.4510 19.2699 19.4530 16.6190 17.3225 21.5182 16.2474 16.5594 19.0475 16.8056 13.7823

BID PLCC 0.2636 0.2612 0.2704 0.4271 0.4799 0.4287 0.3901 0.3643 0.1841 0.3460 0.6017
SRCC 0.2515 0.2383 0.2717 0.4253 0.4882 0.3573 0.3161 0.3236 0.1742 0.3413 0.5839
RMSE 1.2077 1.2085 1.2053 1.1320 1.0983 1.1310 1.1528 1.1659 1.2305 1.1746 0.9936

TABLE III
SUMMARY OF STATISTICAL PERFORMANCES BETWEEN RISE AND THE

EXISTING NR IMAGE SHARPNESS METRICS IN SIX DATABASES. THE

VALUE 1 (0) INDICATES THAT RISE PERFORMS STATISTICALLY

BETTER (COMPETITIVE) THAN THE COMPARED METRIC

Metric LIVE CSIQ TID2008 TID2013 CID2013 BID

Marz. [19] 1 1 1 1 1 1
JNB [20] 1 1 1 1 1 1
CPBD [21] 1 1 1 1 1 1
S3 [22] 0 1 1 1 1 1
FISH [23] 1 1 1 1 1 1
SVC [24] 1 0 1 1 1 1
LPC [25] 1 0 1 1 1 1
MLV [26] 1 0 1 1 1 1
ARISM [27] 0 0 1 1 1 1
SPARISH [28] 0 0 1 1 1 1

prediction monotonicity ranks the third. For real blur, the pro-
posed method also delivers significantly better performances in
both CID2013 and BID databases. In CID2013, RISE achieves
0.7934 and 0.7690 for PLCC and SRCC, while the second best
results are only PLCC= 0.7031 (delivered by LPC-SI [25]) and
SRCC = 0.6607 (delivered by SPARISH [28]), respectively.
In BID, our metric achieves 0.6017 and 0.5839, while the sec-
ond best results (delivered by FISH [23]) are only 0.4799 and
0.4882. From these results, we know that the proposed metric
outperforms the existing sharpness metrics for both synthetic
and real blur.

In order to have an intuitive understanding of the statistical
significance of the proposed RISE metric in relative to the exist-
ing NR image sharpness metrics, we further conduct the F-test
following the same method in [28]. In this experiment, 95%
confidence level is adopted for the F-test. Table III summarizes
the simulation results, where value 1 (0) indicates that RISE
performs statistically better (competitive) than the compared

metric. It is observed from the table that the proposed met-
ric performs statistically better than all the existing sharpness
metrics in TID2008, TID2013, CID2013 and BID databases.
In LIVE, only S3 [22], ARISM [27] and SPARISH [28] are
comparable to the proposed metric. In CSIQ, RISE performs
statistically better than five metrics, and the remaining five met-
rics are statistically comparable to the proposed RISE. From
these results, we know that the overall statistical performance
of the proposed metric is the best.

2) Comparison With General-Purpose NR Image Quality
Metrics: In the literature, several general-purpose NR image
quality metrics have been proposed, which can predict image
quality without knowing specific distortion types. As a metric
specifically designed for image sharpness, the proposed method
is expected to outperform these metrics. To this end, we fur-
ther compare RISE with the state-of-the-art general-purpose
NR image quality models, including BIQI [45], BLLINDS-II
[46], BRISQUE [47], DIIVINE [48], SSEQ [49], NIQE [50]
and QAC [51]. The source codes of these metrics are provided
by the original authors. In this experiment, most of the com-
pared metrics are learning-based methods, and their models are
trained using the LIVE database. For fairness, we also train
our model using the LIVE database. In other words, for syn-
thetic blurring, all models are first trained in LIVE database, and
then they are used for sharpness evaluation in the other three
databases, i.e., CSIQ, TID2008 and TID2013. For CID2013
and BID, since models trained using synthetically blurred im-
ages in LIVE are not applicable to real blurred images, we
re-train all models (both RISE and the compared metrics) fol-
lowing the method described in the above subsection. Namely,
80% of the images are used for model training, and the remain-
ing 20% are used for test. This process is also repeated 1000
times and the median values are reported. Table IV lists the
experimental results, where the best performances are marked
boldfaced.
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TABLE IV
PERFORMANCES OF RISE AND THE GENERAL-PURPOSE NO-REFERENCE QUALITY METRICS ON THREE SYNTHETIC AND TWO REAL BLUR DATABASES

Database Criterion BIQI [45] BLIINDS-II [46] BRISQUE [47] DIIVINE [48] SSEQ [49] NIQE [50] QAC [51] RISE

CSIQ PLCC 0.8470 0.8870 0.9249 0.8824 0.8711 0.9265 0.8352 0.9555
SRCC 0.7713 0.8915 0.9025 0.8716 0.8732 0.8944 0.8362 0.9389
RMSE 0.1523 0.1323 0.1090 0.1348 0.1407 0.1078 0.1576 0.0845

TID2008 PLCC 0.7940 0.8419 0.8656 0.8350 0.8578 0.8323 0.8134 0.9167
SRCC 0.7988 0.8589 0.8648 0.8294 0.8521 0.8233 0.8116 0.9138
RMSE 0.7134 0.6332 0.5876 0.6457 0.6031 0.6505 0.6827 0.4689

TID2013 PLCC 0.8209 0.8583 0.8699 0.8479 0.8668 0.8148 0.8481 0.9285
SRCC 0.8186 0.8626 0.8666 0.8440 0.8633 0.8035 0.8466 0.9339
RMSE 0.7127 0.6403 0.6155 0.6616 0.6222 0.7234 0.6613 0.4635

CID2013 PLCC 0.7702 0.7250 0.7040 0.5219 0.6761 0.6885 0.1776 0.7934
SRCC 0.7426 0.6972 0.6784 0.4451 0.6605 0.6292 0.1584 0.7690
RMSE 14.4158 15.4924 15.9511 19.2129 16.6101 16.5699 22.4854 13.7823

BID PLCC 0.6003 0.5466 0.6101 0.4786 0.5996 0.4618 0.3197 0.6017
SRCC 0.5750 0.5284 0.5857 0.4341 0.5780 0.4598 0.3084 0.5839
RMSE 0.9951 1.0443 0.9859 1.0903 0.9924 1.1104 1.1862 0.9936

TABLE V
SUMMARY OF STATISTICAL PERFORMANCES BETWEEN RISE AND

THE EXISTING GENERAL-PURPOSE NR IMAGE QUALITY METRICS

IN FIVE DATABASES. THE VALUE 1 (0) INDICATES THAT RISE
PERFORMS STATISTICALLY BETTER (COMPETITIVE)

THAN THE COMPARED METRIC

Metric CSIQ TID2008 TID2013 CID2013 BID

BIQI [45] 1 1 1 0 0
BLIINDS-II [46] 1 1 1 1 0
BRISQUE [47] 1 1 1 0 0
DIIVINE [48] 1 1 1 1 1
SSEQ [49] 1 1 1 1 0
NIQE [50] 1 1 1 1 1
QAC [51] 1 1 1 1 1

It is observed from Table IV that the proposed RISE model
significantly outperforms the general-purpose NR image quality
metrics in all synthetic blur databases. In real blur database
CID2013, the proposed metric produces the best results. In BID,
our metric ranks the second, which is only slightly worse than
the best performing BRISQUE [47].

Similar to Table III, F-test is also conducted to know the
statistical significance of the proposed metric in relative to the
existing general-purpose NR image quality metrics. The exper-
imental results are summarized in Table V. It is easily observed
from the table that the proposed metric performs statistically
better than all the compared general-purpose NR image quality
metrics in CSIQ, TID2008 and TID2013 databases. In CID2013,
only BIQI [45] and BRISQUE [47] are statistically competitive
to the proposed RISE metric. In BID database, the proposed
metric performs statistically better than DIIVINE [48], NIQE
[50] and QAC [51]. The performances of the remaining met-
rics are statistically competitive. Therefore, the proposed metric
achieves the best overall performance.

From Tables II to V, we have the following observations.
1) The current image sharpness metrics are mainly effective
for synthetic blur, but they are quite limited in predicting real
blur. 2) Compared to the sharpness metrics, the general-purpose

image quality metrics are more effective in evaluating real blur
than synthetic blur. 3) The proposed RISE metric is effective
for both synthetic and real blur, and it delivers the best overall
performance for both types of blur.

Fig. 7 shows several images with either synthetic or real
blur, together with their subjective (MOS) and predicted RISE
scores. It is observed from the results that with the increase
of MOS values from (a) to (h) (high MOS value corresponds
to high quality), the predicted sharpness scores also increase
accordingly. This indicates that the predicted sharpness scores
are consistent with the subjective ratings.

C. Generalization Ability

For learning-based quality metrics, generalization ability is
an important issue. In this part, we test the generalization ability
of the proposed metric using cross-validation. Specifically, we
conduct two types of cross-validations. Type I: For synthetic
blur, we train our model in one of the four databases, and then
we use the trained model for sharpness evaluation on the other
three databases. Type II: For real blur, we train our models
in CID2013 and BID, and then we use the trained models for
sharpness evaluation on the four synthetic blur databases. Since
real blur is much more complex than synthetic blur, training a
quality model in synthetic blur and then testing in real blur is
not expected to perform well. So we do not include this kind of
cross-validation.

Table VI lists the simulation results of type I cross-validation.
Four models are trained using the four synthetic blur databases
respectively, and the trained models are used for sharpness eval-
uation of the other three databases. From the results, we know
that for the four databases, very encouraging results have been
achieved. Most of the performance values are higher than 0.85,
both for PLCC and SRCC. The best results are achieved when
the model is trained in LIVE database, where the PLCC and
SRCC values are all above 0.91.

Table VII lists the simulation results of type II cross-
validation. In this experiment, two models are trained using
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Fig. 7. Sample blurred images, together with their subjective and predicted RISE scores. Images (a), (c), (d), and (g) are real blurred images from the BID database;
images (b), (e), (f), and (h) are synthetically blurred images from the TID2008 and TID2013 databases. (a) MOS=0.8280, RISE=1.0150. (b) MOS=1.2500,
RISE=1.3506. (c) MOS=1.4239, RISE=2.3972. (d) MOS=2.8391, RISE=3.0765. (e) MOS=3.3636, RISE=3.2060. (f) MOS=3.4000, RISE=3.3440.
(g) MOS=3.9971, RISE=3.4299. (h) MOS=4.3514. RISE=4.5315.

TABLE VI
CROSS-VALIDATION OF THE PROPOSED RISE

METRIC FOR SYNTHETIC BLUR (TYPE I)

Training database Test database

Criterion CSIQ TID2008 TID2013

LIVE PLCC 0.9555 0.9167 0.9285
SRCC 0.9389 0.9138 0.9339
RMSE 0.0845 0.4689 0.4635

Criterion LIVE TID2008 TID2013

CSIQ PLCC 0.9305 0.8509 0.8834
SRCC 0.9119 0.8538 0.8930
RMSE 6.7665 0.6165 0.5848

Criterion LIVE CSIQ TID2013

TID2008 PLCC 0.8802 0.8945 0.8880
SRCC 0.8638 0.8495 0.8696
RMSE 8.7675 0.1281 0.5738

Criterion LIVE CSIQ TID2008

TID2013 PLCC 0.8149 0.8938 0.9734
SRCC 0.8497 0.8913 0.9764
RMSE 10.7071 0.1285 0.2687

real blur databases CID2013 and BID. Then the trained mod-
els are used for sharpness evaluation in the four synthetic blur
databases. It is clear that the experimental results are very en-
couraging. Most of the performance values are higher than 0.80,
which indicates that the predicted sharpness scores are very con-
sistent with the ground truth subjective scores.

From these results, we know that the proposed metric is very
robust because it has very good generalization ability, which is
highly desired in real-world applications.

D. Impact of Scales

The proposed metric is based on sharpness feature extraction
in image scale space. Here, we investigate the impact of scale

TABLE VII
PERFORMANCES OF THE PROPOSED METHOD WHEN THE MODELS TRAINED

IN CID2013 AND BID ARE USED FOR SHARPNESS EVALUATION

IN LIVE, CSIQ, TID2008, AND TID2013 (TYPE II)

Training database Test database

Criterion LIVE CSIQ TID2008 TID2013

CID2013 PLCC 0.8660 0.8374 0.8033 0.8235
SRCC 0.8040 0.7430 0.7929 0.8101
RMSE 9.2375 0.1566 0.6990 0.7079

BID PLCC 0.9039 0.8875 0.8031 0.7718
SRCC 0.8760 0.7906 0.8017 0.7160
RMSE 7.9018 0.1321 0.6992 0.7937

number on the metric performance. Specifically, we test the
performance of the proposed RISE metric with different num-
ber of scales, ranging from 2 to 5. Table VIII summarizes the
experimental results in the six databases, where the best results
in each database are marked in boldface. In order to know the
overall performance, the database-size weighted average results
are also provided.

From Table VIII, we have the following observations. When
only 2 scales are used, the performances are not satisfactory,
especially for real blurred images. Therefore, multiple scales
are needed for effective sharpness evaluation. For the four
synthetic blur databases, namely LIVE, CSIQ, TID2008
and TID2013, 3 to 4 scales are sufficient for obtaining very
good performances. However for the two real blur databases
CID2013 and BID, the best performances are achieved when
5 scales are used. This indicates that real blur is more complex
and needs feature representations in more scales. The best
overall performance is obtained when 5 scales are used. It
should be noted that 3 or 4 scales can also be used in this paper,
which reduces the number of features with the sacrifice of
slightly compromised performance for real blurred images.
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TABLE VIII
IMPACT OF SCALE NUMBER ON THE PERFORMANCES OF THE PROPOSED METRIC

No. of scales Criterion LIVE CSIQ TID2008 TID2013 CID2013 BID Weighted average

2 PLCC 0.9519 0.9484 0.9261 0.9203 0.6953 0.5281 0.7133
SRCC 0.9359 0.9341 0.9157 0.9077 0.6569 0.5157 0.6927

3 PLCC 0.9621 0.9507 0.9379 0.9511 0.7806 0.5948 0.7679
SRCC 0.9493 0.9344 0.9293 0.9442 0.7527 0.5786 0.7497

4 PLCC 0.9630 0.9490 0.9408 0.9500 0.7886 0.5961 0.7708
SRCC 0.9533 0.9287 0.9310 0.9430 0.7622 0.5790 0.7526

5 PLCC 0.9620 0.9463 0.9289 0.9419 0.7934 0.6017 0.7726
SRCC 0.9493 0.9279 0.9218 0.9338 0.7690 0.5839 0.7547

TABLE IX
PERFORMANCES OF THE PROPOSED METRIC WHEN DIFFERENT

PERCENTAGES OF IMAGES ARE USED FOR MODEL TRAINING

Traning-test Criterion LIVE CSIQ TID2008 TID2013 CID2013 BID

80%-20% PLCC 0.9620 0.9463 0.9289 0.9419 0.7934 0.6017
SRCC 0.9493 0.9279 0.9218 0.9338 0.7690 0.5839

60%-40% PLCC 0.9483 0.9320 0.8981 0.9122 0.7633 0.5773
SRCC 0.9376 0.9173 0.8947 0.9066 0.7456 0.5652

50%-50% PLCC 0.9449 0.9281 0.8810 0.8959 0.7486 0.5656
SRCC 0.9346 0.9117 0.8777 0.8878 0.7317 0.5551

40%-60% PLCC 0.9412 0.9232 0.8627 0.8769 0.7276 0.5469
SRCC 0.9300 0.9043 0.8607 0.8698 0.7114 0.5370

E. Impact of Training Images

In order to have an intuitive understanding of how the num-
ber of training images affect the metric performance, we also
conduct an experiment to test the proposed method when dif-
ferent numbers of images are used for model training. In this
experiment, we use four different percentages of images for
model training, namely 80%, 60%, 50%, 40%. The experimen-
tal results are summarized in Table IX. It is clearly known from
the table that with the decreasing number of training images,
the performance values drop slightly. For the proposed method,
even if only 40% images are used for training, the performance
is still very good. This is helpful in real-world applications be-
cause relatively small amount of images can be used for model
training, which can still achieve very satisfactory results.

F. Contributions of Components

In the proposed metric, three kinds of features are extracted
to train the quality model, including gradient, SVD and entropy.
In this part, we further investigate their individual contributions
to the overall performance. To this end, we conduct model train-
ing and test using the three groups of features, separately. As
aforementioned, this operation is conducted 1000 times and the
median PLCC and SRCC values are reported. Table X summa-
rizes the experimental results.

From Table X, we have the following findings. For synthetic
blur, each feature can achieve very promising results, and al-
most all the PLCC and SRCC values are above 0.90. However,
neither of them can achieve the best results in all databases.
Specifically, gradient feature delivers the best performances in
TID2008 and TID2013, while SVD feature performs the best

TABLE X
CONTRIBUTIONS OF THE THREE COMPONENTS IN THE PROPOSED MODEL

Feature Criterion LIVE CSIQ TID2008 TID2013 CID2013 BID

Gradient PLCC 0.9425 0.9399 0.9423 0.9526 0.5418 0.3732
SRCC 0.9301 0.9217 0.9338 0.9431 0.5290 0.3541

SVD PLCC 0.9569 0.9628 0.9211 0.9364 0.6933 0.4786
SRCC 0.9453 0.9379 0.8951 0.9231 0.6253 0.4629

Entropy PLCC 0.9276 0.9334 0.9115 0.9132 0.5824 0.4070
SRCC 0.9046 0.9043 0.9053 0.9018 0.5128 0.3827

All PLCC 0.9620 0.9463 0.9289 0.9419 0.7934 0.6017
SRCC 0.9493 0.9279 0.9218 0.9338 0.7690 0.5839

in CSIQ. For real blur, a single feature does not perform well
so the individual performances are much lower than that pro-
duced by using all three features simultaneously. This is not
hard to understand in that the quality of real blurred images are
commonly determined by a various of factors, including camera
out-of-focus, camera/object motion, image local contrast, etc.
As a result, more diversified features are needed to build a more
reliable model for real blur. From these results, we know that
all three features are needed to achieve consistently good per-
formances for sharpness evaluation, especially for real blurred
images captured by consumer-type cameras in uncontrolled
environments.

IV. CONCLUSION

In this paper, we have presented a novel objective no-
reference quality metric for robust image sharpness evalua-
tion. The proposed method has been inspired by the fact that
the human visual system is highly adapted to extract multi-
scale and multi-resolution features for scene understanding.
With these considerations, we have extracted multi-scale and
multi-resolution quality features in both the spatial and spec-
tral domains to learn a sharpness quality model. We have tested
the performances of the proposed metric in six blurred image
databases, including both synthetic and real blur. The experi-
mental results have confirmed that our metric is advantageous
over the existing sharpness and general-purpose image qual-
ity metrics. Furthermore, the proposed method has very good
generalization ability, because a model trained in one database
can be readily applicable to other databases with very good
performances.
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Based on this study, we have also found that while the state-
of-the-art sharpness metrics are effective for synthetic blur, they
are quite limited in predicting real blur. The proposed metric
is more effective for real blur than the existing metrics, but its
performance is far from ideal. To develop more advanced quality
models for real blur evaluation is still highly desired.
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